本書基于《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017年版2020年修訂)》與PISA數(shù)學(xué)素養(yǎng)測評體系,借鑒教育認(rèn)知診斷評估理論與技術(shù)中的有關(guān)認(rèn)知診斷模型,運用數(shù)學(xué)教育測量與評價理論中的經(jīng)典測量理論和項目反應(yīng)理論等原理和技術(shù)手段,對課程標(biāo)準(zhǔn)所界定的六大數(shù)學(xué)學(xué)科核心素養(yǎng)水平的達(dá)成進(jìn)行測量與評價研究,并以此為基礎(chǔ)探究數(shù)學(xué)學(xué)科核心素養(yǎng)的實
本書以求解非線性波方程的輔助方程法為研究對象,構(gòu)造輔助方程的Weierstrass橢圓函數(shù)解并通過引入Weierstrass橢圓函數(shù)轉(zhuǎn)換為Jacobi橢圓函數(shù)的轉(zhuǎn)換公式而系統(tǒng)建立了構(gòu)造非線性波方程行波解的Weierstrass橢圓函數(shù)法.主要內(nèi)容包括一般橢圓方程的Weierstrass橢圓函數(shù)公式解、Weierstra
作為此前出版的《非線性常微分方程邊值問題》研究內(nèi)容的后續(xù)進(jìn)展,本書是作者十余年來在常微分方程和時滯微分方程周期軌道方面所作研究工作的總結(jié).在介紹臨界點理論和指標(biāo)理論的基礎(chǔ)上,對常用的指標(biāo)理論和指標(biāo)理論作出推廣,提出和論證了Zn指標(biāo)理論和Sn指標(biāo)理論,拓展了應(yīng)用范圍.對不同類型的時滯微分方程通過選定相應(yīng)的Hilbert空
本書是結(jié)合作者多年的教學(xué)經(jīng)驗,根據(jù)理工科“數(shù)學(xué)物理方程”教學(xué)大綱的要求及數(shù)學(xué)類、大氣科學(xué)類等專業(yè)的需要而編寫的。本書以方法為主線,內(nèi)容包括典型模型定解問題的建立、方程的分類與標(biāo)準(zhǔn)型、行波法、分離變量法、積分變換法和格林函數(shù)法等。在此基礎(chǔ)上,介紹了研究偏微分方程定性理論的極值原理和能量方法,探討了貝塞爾函數(shù)與勒讓德函數(shù)的
本書以反散射理論、Riemann-Hilbert方法、Deift-Zhou非線性速降法和速降法為分析工具,系統(tǒng)闡述這些方法在可積系統(tǒng)、正交多項式和隨機(jī)矩陣?yán)碚摲矫娴膽?yīng)用.主題部分取材于Deift、McLaughlin、Biondini、Jenkins等一些學(xué)者近年來**前沿成果.內(nèi)容主要包括Riemann-Hilber
本書是關(guān)于超奇異積分的數(shù)值計算及其應(yīng)用方面的專著,全書共8章:第1章為引言,簡要介紹超奇異積分的由來,使讀者可以輕松地閱讀本書;第2章闡述邊界歸化方法和典型域上的超奇異積分方程,詳細(xì)介紹區(qū)間上和圓周上超奇異積分方程的引入,以及求解超奇異積分方程的經(jīng)典方法;第3章介紹超奇異積分的定義,并闡述不同的定義在一定條件下是等價的
"本教材主要內(nèi)容包括:分析基礎(chǔ):函數(shù),極限,連續(xù);微積分學(xué):一元微積分,多元微積分;向量代數(shù)與空間解析幾何;無窮級數(shù);常微分方程等高等數(shù)學(xué)核心內(nèi)容知識點總結(jié)及精選習(xí)題。 全書分為11個章節(jié),第4~6章,第6~9章均包括知識點總結(jié)及練習(xí)、綜合例題、自測題和研究生入學(xué)試題及高等數(shù)學(xué)競賽試題選編等內(nèi)容,第5章、第10章分別
深水中的Benjamin-Ono(BO)方程是一類非常重要的非線性色散方程,具有廣泛的物理背景和應(yīng)用背景。該類方程存在一類具有有限分式的代數(shù)孤立子,并且屬于可積系統(tǒng)。本書給出該類方程的物理背景并闡述其怪波解,著重研究幾種重要類型的BO方程的數(shù)學(xué)理論,其中包括在能量空間和Bourgain空間上的整體解的存在性、**性和低
常微分方程穩(wěn)定性理論和Lyapunov函數(shù)方法的重要價值與意義在一百多年來的發(fā)展歷史中已經(jīng)得到了充分的證明,形成了從理論到應(yīng)用的一個非常豐富的體系!冻N⒎址匠谭(wěn)定性基本理論及應(yīng)用》較系統(tǒng)地介紹了常微分方程穩(wěn)定性理論和Lyapunov函數(shù)方法的基礎(chǔ)內(nèi)容和應(yīng)用,從中讀者可基本了解常微分方程穩(wěn)定性理論的發(fā)展?fàn)顩r和研究方法。
Hom-李型代數(shù)作為一個比較年輕的代數(shù)方向,已經(jīng)被推廣到很多經(jīng)典的代數(shù)結(jié)構(gòu)中,近年來取得了比較豐富的研究成果.《Hom-李型代數(shù)》以作者十年來在該方向的研究成果為基礎(chǔ),介紹Hom-李型代數(shù)理論及研究動向.《Hom-李型代數(shù)》共六章,分別介紹了Hom-李型代數(shù)的導(dǎo)子與廣義導(dǎo)子理論、表示、上同調(diào)與擴(kuò)張理論、形變理論