本書緊密結合現行中學數學的教學內容,以問題驅動的理念為基準,開展數學解題的探索.在方法上,從“直覺”“辨析”“解決”三個角度分析數學解題的過程;在題目的選擇上,除選擇一些傳統的幾何、代數的題目外,納入了大量的函數、概率方面的題目,以更好地指導教師的課堂教學及提升學生的應試能力.
以問題驅動的理念為基準,從“直覺”“辨析”“解決”三個角度分析數學解題的過程,指導教師的課堂教學及提升學生的應試能力。
序
很多年以前拜讀過波利亞的《怎樣解題》,這本書或許可以算得上關于如何解題的經典著作了,影響了很多人. 在今天看來,該書存在兩個方面的問題,一是內容太過陳舊,基本上限于很傳統的中學數學內容,今天的中學數學內容之廣、思維量之大是傳統中學數學無法企及的; 二是太過于糾纏細節(jié),有些問題也許是不必要的,教師在課堂上實際也很難按照該書的方案開展教學,它比較適合于節(jié)奏比較緩慢的教學,在知識量空前提高的今天,這樣的節(jié)奏多少顯得有些不合時宜. 當然,這只是一孔之見,未見得正確,姑妄言之,姑妄聽之.
《怎樣解題》強調思維能力的培養(yǎng),這與新課標的理念以及我們一貫提倡的觀念不謀而合.傳統的教學也許過分強調了解題技巧,姑且稱為技巧性思維吧,忽略了直覺感知能力與思辨能力的培養(yǎng).解題對于思辨能力的提升有沒有幫助?我想是有的,解題的功能通常包括強化基礎知識和技能、培養(yǎng)解題的思維能力、提高解題技巧、培養(yǎng)邏輯思維能力等,這與一般意義上的解題訓練是不同的. 2024年新課標數學高考試卷對于考生平時思考問題的方法是個很好的檢驗,不僅試題量減少了,打亂了往年試題內容的順序,而且部分題型新穎,對考生的思維能力是很大的考驗,考生依靠平時刷題和解題技巧的訓練很難應付這類題型.它需要考生真正懂得思考,從陌生的情境中尋找解決問題的方案. 這與花費相當大的篇幅讓考生臨場學習新的知識有著本質不同. 考試畢竟是檢驗考生掌握已學知識的程度以及靈活運用這些知識的能力,學習能力不應該在時間非常寶貴的考試中檢驗.人與人的學習速度有區(qū)別,吸收新知識的快慢并不代表已有的知識有沒有掌握好或者思維能力強不強,試題中夾帶一些教材與課標中沒有的所謂新知不是一種創(chuàng)新性命題方式,它也不可能真正檢驗出考生的創(chuàng)新能力. 從這個意義上說,2024年新課標數學高考試卷的命制頗具水準,具有真正的創(chuàng)新性,大大提升了考題的思維量. 有鑒于此,本書專門安排1章的篇幅談論這兩套試卷,討論是否精準到位有待行家指正.
解題有沒有一般性策略?我想是有的,對解題意義的認識、解題方法的凝練、解題目標的明確以及解題的反思、規(guī)范等對解題策略都具有重要價值. 如何通過解題提升直覺思維能力、思考辨析能力、解決問題能力以及想象力都是需要思考的. 本書由數學解題簡論、數學解題能力的培養(yǎng)、新課標數學高考試卷分析及對教學的啟示,以及高中數學解題研究4章組成. 原計劃涵蓋初中數學,但限于篇幅,只能另冊考慮. 在內容的編排上,我們嘗試將題與解答分開,讀者可以先行嘗試求解,再與后面的答案比較,或許效果更好.如果本書能對大學數學專業(yè)師范生、教育學碩士以及中學一線教師們有所幫助,我們的目的也就達到了.
曹廣福
2025年1月25日
張蜀青,博士,正高級教師,特級教師。入選國家、省級高層次人才項目教學名師,廣東省名教師工作室主持人。在廣州市執(zhí)信中學任教中學數學30年,2013-2023年擔任廣州市執(zhí)信中學數學科組長。帶領學生在高考、英才論壇、科技創(chuàng)新大賽、高中數學聯賽屢創(chuàng)佳績,實現執(zhí)信中學在這些項目上一等獎零的突破,被評為高中數學競賽輔導教師、廣東省英才計劃輔導員。2023年8月起在廣州大學任教。
目 / 錄
第1章數學解題簡論/
1.1數學解題的認識
1.2數學解題的意義
1.3數學解題的方法
1.4數學解題的目標
1.5數學解題的反思
1.6數學解題的規(guī)范
1.7數學解題的能力
第2章數學解題能力的培養(yǎng)/
2.1課堂教學對解題能力提升的意義
2.1.1想象力對解題的重要性
2.1.2數學直覺的培養(yǎng)
2.1.3思辨能力的培養(yǎng)
2.1.4解決問題能力的培養(yǎng)
2.2數學解題能力的自我提升
2.2.1直覺思維能力的自我提升
2.2.2思考辨析能力的自我提升
2.2.3解題能力的自我提升
第3章新課標數學高考試卷分析及對教學的啟示/
3.1新課標數學高考試卷分析
3.1.1試卷題型分布
3.1.2試卷題型分析
3.2對教學的啟示
第4章高中數學解題研究/
4.1高中考試內容的分布
4.1.1概率統計共3題(22分)
4.1.2圓錐曲線共4題(27分)
4.1.3函數與導數(含集合、數列)共8題(52分)
4.1.4代數與幾何共4題(27分)
4.1.5復數與三角共3題(22分)
4.2高中數學解題策略
4.3概率與統計典型題例分析
4.3.1概率與統計選擇題與填空題典型題例
4.3.2概率統計選擇題與填空題典型題例解析
4.3.3概率統計解答題典型題例
4.3.4概率統計解答題典型題例解析
習題
習題答案
4.4函數與導數典型題例解析
4.4.1數列問題
4.4.2數列問題解析
4.4.3函數選擇題
4.4.4函數選擇題解析
4.4.5函數填空題
4.4.6函數填空題解析
4.4.7函數解答題
4.4.8函數解答題解析
習題
習題答案
4.5圓錐曲線
4.5.1選擇題與填空題
4.5.2選擇題與填空題解析
4.5.3解答題
4.5.4解答題解析
習題
習題答案
4.6立體幾何
4.6.1選擇題與填空題
4.6.2選擇題與填空題解析
4.6.3解答題
4.6.4解答題解析
習題
習題答案
參考文獻/