本書下冊包含兩章(第15及16章)和三個附錄(附錄H,I,J)。第15章講授拉氏和哈氏理論,第16章介紹黑洞(熱)力學,包括傳統(tǒng)(穩(wěn)態(tài))黑洞熱力學及其后續(xù)發(fā)展,特別是比較詳細地講解了(弱)孤立視界和動力學視界等重要概念,并對近代有關文獻的許多公式給出了詳細的推證,附錄H講授Noether定理的證明(包括用幾何語言和坐標
本書的主要內容是函數(shù)空間的廣義度量性質及基數(shù)函數(shù)性質。全書由兩部分組成,第一部分介紹緊空間、仿緊空間、度量空間及度量空間的連續(xù)映像,第二部分介紹連續(xù)函數(shù)空間的拓撲結構、基數(shù)函數(shù)及某些重要的廣義度量性質。本書展示了度量空間映像的核心內容及函數(shù)空間優(yōu)美的對偶理論,突出了完全性在探索函數(shù)空間收斂性中的作用,把集論拓撲的研究應
學習和掌握張量基本知識是研究各種物質和結構的連續(xù)介質力學的基礎,當然也是研究晶體結構,廣義相對論的基礎。然而,當前對張量的講述和介紹方式的復雜化傾向,造成理解和運用它的很大困難。這本小冊子試圖通過笛卡爾坐標系和它的對偶坐標形式,引入張量概念和基本運算,闡明張量本質上是坐標變換,熟悉求和約定和指標表示是其關鍵,從而使張量
本書的主要研究內容是在模式識別應用領域中,提出新的基于張量數(shù)據(jù)的特征提取和分類算法,并且對這些張量型算法進行詳細的理論推導和性能分析,在實驗中驗證所提出算法的優(yōu)越性。
本書是在同濟大學數(shù)學科學學院和西北師范大學數(shù)學與統(tǒng)計學院各專業(yè)多次講授空間解析幾何課程的基礎上形成的,內容包括空間坐標系、向量代數(shù)、平面與空間直線、直紋面與旋轉曲面、二次曲面、等距變換與仿射變換等。本書結構緊湊,各章節(jié)的主要數(shù)學思想顯著突出,注重展現(xiàn)數(shù)學知識的發(fā)生過程和數(shù)學問題解決的思維過程,強調幾何的直觀性,努力處理
本書共分兩個部分:拓撲學中的手性和數(shù)學走進生物大分子序列。 *部分是一次演講的綱要。手性就是左右不對稱性,是自然界的常見現(xiàn)象,在化學中日益重要。本文介紹了作者和王詩宬教授合作的一個科研課題的來龍去脈。從材料化學家1982年的實驗和問題、拓撲學家1986年的回答,提出我們自己的新概念與新問題。解釋了所涉及的數(shù)學概念,以
本書介紹一系列典型而有趣的組合幾何問題。全書論述力求深入淺出,周密詳盡,配有大量插圖,以便讀者思考理解;本書既注重問題的趣味性,又不失推理嚴謹,體現(xiàn)了組合幾何這門學科的特點,可謂“直覺與抽象齊飛,淺近共深奧一色”!禕R》書中大部分命題定理均給出淺近完整的證明,有的命題還給出多種證明,以觸類旁通,開闊思路。各個章節(jié)的內
本書旨在系統(tǒng)介紹基于Moreau?CYosida正則化的非光滑優(yōu)化理論與方 法,主要的內容包括凸集和凸函數(shù)的概念、次梯度和Moreau?CYosida正則 化有關性質;求解非光滑優(yōu)化問題的束方法,以及牛頓束方法和有限記憶 束方法;提出非光滑優(yōu)化的共軛梯度算法,包括改進的PRP算法和改進的 HS算法以及Barzilai和
本書以屬性拓撲理論及其應用為主線,系統(tǒng)地介紹了屬性拓撲基本理論及其應用的最新研究成果。全書分為基礎知識、概念計算、關聯(lián)分析、記憶模型4篇,共13章。
導語_點評_推薦詞